First off, if you're following this whole discussion you'll likely enjoy the comments section of the last two posts, some really good ideas and thoughts without the usual "the internet makes you stupid) influence in forums. Thanks for that to all who wrote.
The main question I have with most of the research done on belay anchors that I've seen is that it doesn't take into account the weight of the belayer (belayers) on the anchor as pieces fail. The falling climber is attached to a big spring, but that force goes through the belayer and into the anchors. If a piece in the anchor blows then the belayer is being accelerated faster than just gravity; he may become a sort of human "funkness" cleaner device on the anchor (not really 'cause hopefully he tied in with his rope, but there's the idea). This is why there are some very high forces in the "J.M" study when a single point blows with a 500-pound weight suspend on the anchor (that's about three of me, but hey, the world is getting fatter!).
I don't think I'm going to use the equalette, Trango Alpine Equalizer (nice video Mal!) or any other form of "self-equalizing" anchor very much. The easiest to explain reason is that equalettes and other systems are a pain to deal with, doubly so in winter. Knots lock up under real loads at hanging belays, especially with thin slings and cord. Even a falling second on the power point will completely lock most knots for the day in modern thinner materials.
The second reason is that any anchor that allows the focal point carabiner to move enough to produce meaningful real-world equalization also allows that carabiner to move so much that some degree of shock loading is inevitable when a piece rips. If you're clipped into the focal point with the rope then this shock loading will be lower, but the study that started all this discussion (link here) has made me think more carefully about what happens when a piece fails in a multi-piece anchor system held together with a static material. I await more research from Mr. JimE (like he doesn't have enough to do already at Sterling!) when he gets a chance.
The third reason is that if you build an equalette or other system "correctly" so that each piece equalizes relatively well (and in the real world I'm not thinking this happens much at all) then you only have a 1/3 chance of the anchor not extending violently if one piece is relatively weak... So then you have a 2/3 chance of a violent extension (equalette cord to piece A, carabiner on focal point, cord to a carabiner, sliding X to pieces B and C). Half the load theoretically will go to the leg that goes to A, and half to the leg that goes to the sliding X on B and C, so only 1/4 load on each of those pieces...). The way I'd build this anchor is to put leg A on the absolute strongest piece in the anchor, and a sliding X on B and C as they should only have 1/4 load on each of them. Might be easier to diagram this if it's not making sense. Anyhow, in a non-lab fall the odds are high that the impact is going to be violent and off to the side, or at least far enough off the vertical axis directly below the focal point that the carabiner is going to hit the limiter knots, and then you're totally on either the strong piece or the two weaker pieces. If either of the weaker pieces blow then you've got horrendous extension. If the "strong" piece blows then you're on the two weaker pieces and the equalization isn't that great so if one of those blows you're potentially shocking the hell out of the remaining piece.
A cordalette (a relatively huge knot, especially when tied with a figure 9) doesn't tend to lock up so much even in winter if done with 7mm or larger cord or a couple of slings roughly equalized and either tied together or clipped into a burly focal point (use the rope for the focal point--chance of cross-loading a biner, be careful of that) probably does about as well. Maybe. You should figure it out for yourself, I'm just thinking this stuff through. The more I think about this all, read about it, talk about and work through the more I end up in the same place: have at least one and better two or more bomber pieces in the anchor or it's not a bomber anchor.